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Positron emission tomography (PET) is an imaging 
technology that measures the concentration, distribu­
tion, and pharmacokinetics of radiotracers—molecules 

that are labeled with short-lived positron-emitting variants 
(i.e., radioisotopes) of chemical elements naturally found in 
the body. These radioisotopes can be attached to compounds 
involved in normal brain function and then injected into the 
blood stream. For example, radioactive carbon-11 (11C) and flu­
orine-18 (18F)  can be used to label the sugar glucose, which is 
the brain’s only energy source, and oxygen-15 (15O) can be 
used to label water molecules, which can help measure blood 
flow in the brain. The signals emitted by these radiotracers 
then are measured using specific detectors. For example, for 
brain measurements, detectors arranged in a ring around the 
subject’s head collect the data, which are then transferred to 
a computer and converted into a three-dimensional image 
of the brain. Because these measurements are noninvasive, 
the technology allows researchers to track biochemical trans­
formations in the living human and animal body. PET is a 
highly sensitive method; it measures radioisotope concentra­
tions in the nanomolar to picomolar range (10-9 to 10-12 M) 
(Schmidt 2002). Therefore, the technique can be used to label 
compounds that are of pharmacological and physiological 
relevance. These radiotracers then can be used to probe 
neurochemical and metabolic processes at the relevant physi­
ological concentrations without perturbing the system that is 
measured. 

To exert their effects on the brain, alcohol and other 
drugs (AODs) act on signaling molecules (i.e., neurotrans­
mitters) in the brain as well as on the molecules on the 
surface of neurons (i.e., receptors) with which the neuro­
transmitters interact. (For more information on nerve sig­
nal transmission, neurotransmitters, and their receptors, 
see the article by Lovinger, pp. 196–214.) Specific com­
pounds that selectively bind to such receptors, to the 
molecules that transport neurotransmitters back into cells, 
and to the enzymes that are involved in the synthesis or 
metabolism of neurotransmitters can be labeled for use as 
PET radiotracers. As a result, PET can be used to assess 
the metabolic and neurochemical actions of AODs and to 
evaluate the consequences of chronic AOD use (Volkow et 
al. 1997; Wang et al. 2000; Wong et al. 2003). Since its 

inception, PET has been used extensively to study the 
effects of AODs in human and nonhuman primates; how­
ever, the recent development of microPET technology has 
expanded its applications to research in rodents. In addition, 
increasing numbers of studies are using PET methodology 
to assess the involvement of genetic variations in individual 
genes (i.e., polymorphisms) in brain function and neuro­
chemistry. This article specifically summarizes the role of 
PET as a tool for alcohol neuroscience research. The stud­
ies discussed are divided into those that assess the effects 
of alcohol on brain function (i.e., brain metabolism and 
cerebral blood flow) and those that assess its effects on 
neurochemistry. 

PET Analyses of Brain Function 

Indicators of brain function, such as cerebral blood flow, glu­
cose utilization, and oxygen consumption, are the most com­
mon signals detected in functional brain-imaging techniques. 
These metabolic signals have been examined in a variety 
of disorders, primarily through the use of (18F)-fluoro-2­
deoxyglucose (FDG) as a radiotracer in PET imaging. 
Thirty-two years after its introduction, FDG still is the most 
widely used radiopharmaceutical for PET studies. This type 
of PET imaging allows the noninvasive observation of glu­
cose utilization by different types of brain cells, including 
neurons and supporting cells known as glial cells (Magistretti 
and Pellerin 1996). In the brain, the sugar glucose is metabo­
lized to lactate, which is a preferred energy source for neu­
rons. Accordingly, glucose metabolism is a powerful indicator 
of brain function. FDG–PET imaging has the potential to 
detect very early brain dysfunction, even before neuropsycho­
logical testing yields abnormal results. In addition, the tech­
nique can be used to monitor treatment response and the 
effects of possible therapeutic intervention against the disease. 

PET analyses using FDG to measure brain glucose 
metabolism and radiolabeled water to measure cerebral 
blood flow have been used to study the acute and chronic 
effects of alcohol in nonalcoholic control subjects, alco­
holics, and people at risk of alcoholism (e.g., children of 
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alcoholics). Other PET studies using FDG have examined 
alcohol’s toxic effects on neurons (i.e., neurotoxicity) or 
gender-specific responses to alcohol. The findings include 
the following: 

•	 Acute alcohol administration markedly reduced brain glu­
cose metabolism throughout the whole brain, including 
the prefrontal cortex (Volkow et al. 2006) (see figure 1), 
whereas it increases cerebral blood flow in some brain regions, 
such as the prefrontal cortex (Volkow et al. 2007). In 
addition, it was shown that alcoholics displayed both a 
prefrontal modulation (i.e., reduced brain glucose) in the 
activity of cells using the neurotransmitter dopamine, 
combined with a profound decrease in dopamine activity 
(Volkow et al. 2007). These data suggested that interven­
tions to restore prefrontal regulation and the dopamine 
deficit could be therapeutically beneficial in alcoholics 
(Volkow et al. 2007). Moreover, normally, brain metabolism 
and cerebral blood flow are coupled—that is, areas that 
show high brain metabolism also exhibit high blood flow 
and vice versa. Thus, these findings also suggest that alco­
hol dissociates this metabolic flow coupling. 

•	 A recent FDG–PET study demonstrated abnormally low 
function of a brain region called the thalamus, which pro­
cesses and relays information from other brain regions, in 
alcoholics suffering from acute alcohol-related hallucina­
tions (Soyka et al. 2005). 

•	 Alcoholics and normal subjects respond differently to an 
acute alcohol challenge, with the alcoholics showing a 
smaller behavioral response but larger decrease in brain 
metabolism than normal subjects (Volkow et al. 1993). 

•	 Regional brain metabolic changes in response to treatment 
with the benzodiazepine medication lorazepam, which, 
like alcohol, enhances the activity of the neurotransmitter 
γ-aminobutyric acid (GABA), differed between alcoholic 
and control subjects. The findings likely indicate altered 
function of a certain type of GABA receptor (i.e., the 
GABA–BZ receptor) in alcoholics (Volkow et al. 1995). 
Indeed, the pattern of regional brain metabolic decrements 
seen with acute alcohol administration is similar to that 
observed after acute administration of lorazepam in healthy 
people, supporting the hypothesis that alcohol and benzo­
diazepines have a common molecular target for some 
metabolic effects (Wang et al. 2000). 

•	 Studies measuring brain glucose metabolism or cerebral 
blood flow documented reduced activity in frontal and 
parietal cortical regions in alcoholics. This observation is 
consistent with findings from neuropsychological studies 
showing that alcoholics have deficits in executive function 
and attention, which are controlled by these brain areas. 
Overall, these studies strongly support the concept that 
alcoholism is associated with damage to the frontal and 
parietal lobes. 

•	 Several studies have used imaging to probe the recovery 
of brain function after alcohol withdrawal. These studies 
found that the alcohol-related decreases in brain glucose 
metabolism partially recover in abstinent alcoholics, par­
ticularly during the first 16 to 30 days after withdrawal 
(Volkow et al. 1994).  

Imaging studies also have addressed the influence of 
gender on the effects of alcoholism on the brain. It gener­
ally is believed that women are more vulnerable to alco­
hol’s toxic effects than men. However, whereas male alco­
holics have consistently shown reductions in brain glucose 
metabolism relative to control subjects, a PET study using 
18FDG in 10 recently detoxified female alcoholics reported 
no differences between alcoholics and control females 
(Wang et al. 1998). These results do not support the assump­
tion that alcohol has greater toxic effects on the female brain, 
at least with respect to regional brain glucose metabolism. 
However, it should be noted that the severity of alcohol use 
in these female alcoholics was less than that of the male 
alcoholics previously investigated in PET studies. Therefore, 
studies in male subjects with moderately severe alcoholism are 
required to confirm gender differences in sensitivity to alco­
hol’s effects on brain metabolism. 

PET Analyses of Neurotransmitters and 
Receptor Binding 

PET imaging also has been an effective tool in examining 
neurotransmitter systems associated with alcohol abuse and 
alcoholism (for a review of the various neurotransmitter sys­
tems affected by alcohol, see Koob 2003; Koob and Le Moal 
2008). PET studies have shown that several neurotransmit­
ters appear to mediate alcohol’s reinforcing and addictive 
effects (Wang et al. 2000). Of these, dopamine is believed to 
play perhaps the most important role in mediating alcohol’s 
reinforcing effects by acting on a brain circuit called the 
mesolimbic dopamine system1 (Fowler and Volkow 1998). 
Researchers have used a plethora of radiolabeled compounds 
to examine various components of the dopamine system 
using PET analyses, including the following: 

• [11C]m-tyrosine, a radiolabeled variant of the amino 
acid tyrosine, which is the starting material for dopamine 
synthesis; 

• [18F]DOPA, a radiolabeled variant of a compound 
known as 3,4-dihydroxy-L-phenylalanine (L-DOPA), 
which is an intermediate product in dopamine synthesis; 

•	 A molecule called [11C]DTBZ (dihydroytetrabenzine), 
which helps measure the activity of the vesicular monoamine 
transporter (VMAT)—a transport protein that helps 

1 This brain circuit primarily involves two brain regions called the ventral tegmental area 
(VTA) and the nucleus accumbens (NAc). It plays a central role in reward, motivation, 
and reinforcement. Its activity also is controlled by certain areas of the prefrontal cortex. 
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transport dopamine and other signaling molecules into 
the vesicles in which they are stored in the signal-emitting 
(i.e., presynaptic) neuron; 

• [11C]cocaine, which helps measure the activity of the 
dopamine transporter (DAT) that shuttles released 
dopamine back into the presynaptic cells; 

•	 A compound called [11C]SCH23390 that helps deter­
mine the activity of a certain dopamine receptor, the D1 
dopamine receptor (D1R); and 

•	 A molecule called [11C]raclopride, which helps measure 
the activity of another dopamine receptor, the D2 
dopamine receptor (D2R). 

PET imaging studies, as well as postmortem studies 
of alcoholic subjects, have indicated that D2R levels may 
be involved with alcohol addiction, because the levels of 
these receptors were reduced in the striatum of the brains 
of alcoholic subjects (Heinz et al. 2004; Volkow et al. 1996). 
Additional PET analyses using [11C]raclopride demonstrat­
ed that higher D2R availability in nonalcoholic members 
of alcoholic families may protect these individuals against 
alcoholism (Volkow et al. 2006). The data also supported 
the notion that the low D2R levels observed in alcoholics 
may reflect the effects of chronic alcohol exposures. 

Other PET studies have used [11C]raclopride to assess 
changes in dopamine induced by stimulant drugs as a 
measure of the reactivity of dopamine-releasing cells. This 
approach is based on the fact that [11C]raclopride competes 
for binding to D2 receptors with endogenous dopamine— 
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Figure 1 Brain activity during alcohol intoxication. Alcohol drinking markedly 
reduces brain metabolism. 

that is, the more endogenous dopamine is released by the 
neurons, the less [11C]raclopride can bind to the receptor 
and vice versa. Thus, changes in specific [11C]raclopride 
binding that occur after stimulant administration reflect 
the relative increases in dopamine induced by the drug. 
Several studies have revealed a decrease in dopamine release 
in alcoholic subjects, particularly in the ventral striatum 
(Martinez et al. 2005; Volkow et al. 2007). In contrast, 
clinical studies comparing people with a positive family 
history for alcoholism and people without such a family 
history did not show differences between the two groups 
in stimulant-induced dopamine increases in the striatum. 
These data suggest that the decreased dopamine release in 
alcoholics is caused by chronic alcohol exposure (Monro 
et al. 2006). The investigators postulated that the decreased 
reactivity of the mesolimbic dopamine system in alcoholics 
could put them at risk of consuming large amounts of alco­
hol to compensate for deficiencies in this reward pathway. 

Investigators also have conducted PET studies using 
multiple tracers simultaneously to study the relationship 
between the changes in dopamine activity (as assessed 
with [11C]raclopride) and brain glucose metabolism in the 
prefrontal cortex (as measured with FDG). These studies 
demonstrated a negative association between brain glucose 
metabolism in prefrontal cortical regions (i.e., cingulated 
gyrus, dorsolateral cortex, and orbitofrontal cortex) and 
changes in dopamine levels in the striatum (which also 
contains the nucleus accumbens) of control subjects. Thus, 
the higher the metabolism in the prefrontal region the 
lower the changes in dopamine levels. In alcoholic sub­
jects, in contrast, the activity in the prefrontal cortical 
regions was not correlated with dopamine changes in 

the striatum (Volkow et al. 2007). 
These findings suggest that in alcoholics 
the normal regulation of dopamine cell 
activity by signals from the prefrontal 
cortex is disrupted; thus, the decreased 
dopamine cell activity in alcoholics 
may represent abnormal prefrontal 
regulation of the mesolimbic 
dopamine system. 

Another study measured the activ­
ity of the vesicular monoamine trans­
porters in alcoholics. This study, which 
used a radiotracer specific for one type 
of these transporters (i.e., [11C]DTB2), 
revealed that the levels of this trans­
porter were reduced in the striatum, 
suggesting that the damaging effects of 
severe chronic alcoholism on the cen­
tral nervous system are more extensive 
than previously considered (Gilman et 
al. 1998). 

PET imaging studies also have 
been used to examine the role of neuro­
transmitters known as endogenous opi­
oids in alcohol dependence. Studies 
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using a radiolabeled synthetic opioid pain reliever, 
[11C]carfentanil, showed that the severity of alcohol craving 
correlated with an increase in a certain type of opiate recep­
tor (i.e., the µ-opiate receptors) in the ventral striatum 
and, particularly, the nucleus accumbens (Heinz et al. 
2005). These findings point to a neuronal correlate of the 
alcohol craving observed in abstinent alcoholic patients. 

Finally, PET analyses have helped examine the neuro­
chemistry underlying the relationship between alcoholism 
and aggression and, more specifically, whether signal trans­
mission mediated by the neurotransmitter serotonin con­
tributes to this relationship (Brown et al. 2007). The inves­
tigators evaluated the density of the serotonin transporter in 
alcoholic patients who were assessed for aggressive charac­
teristics. The results showed that none of the clinical mea­
sures used, including measures of aggression, correlated 
with serotonin transporter binding in the alcoholic subjects. 

Future Directions 

The studies reviewed here reflect the potential of PET as a 
tool to investigate the alcoholic brain. However, there are 
additional opportunities for using this technology to investi­
gate the neural underpinnings of alcoholism. For example, 
PET can be applied to examine the consequences of genetic 
variations (i.e., polymorphisms), gene modifications, or stem 
cell procedures on regional brain function in alcoholics. 

Other studies have demonstrated the feasibility of 
using PET to investigate the role of genes in the rodent 
brain. This development has extended the usefulness of 
PET in elucidating the role of genes in brain function, 
aging, and adaptations to environmental and pharmaco­
logic interventions for alcoholism. Technologies to com­
pletely disrupt (i.e., “knock out”) or newly introduce (i.e., 
“knock in”) certain genes in mice have been particularly 
valuable in elucidating the role of genes and the proteins 
they encode in normal and pathological behaviors (Avale 
et al. 2004; Gainetdinov and Caron 2000; Gainetdinov 
et al. 2001). Other technological advances, such as small-
animal PET imaging and microPET technology have 
rapidly progressed since their introduction (Cherry 1997) 
and today offer PET images with a resolution of just 
under 2 mm. Furthermore, the combination of microPET 
images with images of the same animals obtained using 
other technologies (e.g., high-field magnetic resonance 
imaging) has allowed researchers to extend the use of PET 
imaging studies to rodent models of psychiatric disease 
(Ding et al. 2004; Rodriguez-Gomez et al. 2007; Thanos 
et al. 2002, 2008a,b,c,d). Thus, microPET has become an 
effective in vivo imaging tool for noninvasively studying 
rodent models of alcohol abuse.  ■ 
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